Deduction of Semi-Optimal Mollifier for Obtaining Lower Bound for N(0)(T) for Riemann's Zeta-Function.

نویسنده

  • N Levinson
چکیده

A mollifier played a key role in showing N(0)(T) > 1/3N(T) for large T in ref. 1 [Levinson, N. (1974) Advan. Math. 13, 383-436]. A basic problem in ref. 1 was that of obtaining an upper bound for a sum of two terms, one larger than the other. Here a deductive procedure is given for finding a mollifier that actually minimizes the larger term. An Euler-Lagrange equation is obtained. (Optimization of the sum of both the major and minor terms appears to be formidable.) The actual improvement effected by the optimized mollifier over the ad hoc mollifier of ref. 1 is unfortunately only 1.4%. To obtain a usable mollifier it is necessary to blur the optimization procedure by smoothing at several stages of the deduction. The procedure is of more interest than the particular application because of the small improvement in this case.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Zeros of the Riemann Zeta Function

We describe extensive computations which show that Riemann's zeta function f(s) has exactly 200,000,001 zeros of the form a + it in the region 0 < t < 81,702,130.19; all these zeros are simple and he on the line a = j. (This extends a similar result for the first 81,000,001 zeros, established by Brent in Math. Comp., v. 33, 1979, pp. 1361-1372.) Counts of the numbers of Gram blocks of various t...

متن کامل

Cold standby redundancy optimization for nonrepairable series-parallel systems: Erlang time to failure distribution

In modeling a cold standby redundancy allocation problem (RAP) with imperfect switching mechanism, deriving a closed form version of a system reliability is too difficult. A convenient lower bound on system reliability is proposed and this approximation is widely used as a part of objective function for a system reliability maximization problem in the literature. Considering this lower bound do...

متن کامل

Probability laws related to the

This paper reviews known results which connect Riemann's integral representations of his zeta function, involving Jacobi's theta function and its derivatives, to some particular probability laws governing sums of independent exponential variables. These laws are related to one-dimensional Brownian motion and to higher dimensional Bessel processes. We present some characterizations of these prob...

متن کامل

Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions

This paper reviews known results which connect Riemann's integral representations of his zeta function, involving Jacobi's theta function and its derivatives, to some particular probability laws governing sums of independent exponential variables. These laws are related to one-dimensional Brownian motion and to higher dimensional Bessel processes. We present some characterizations of these prob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 72 1  شماره 

صفحات  -

تاریخ انتشار 1975